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Research Motivation
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• A large number of culverts are installed every year in NC

• Different materials are being used 

• Culvert type is selected based on structural requirements

• Less consideration and guidance on durability issues

• Overdesign vs. Underdesign → increased cost!

• Account for the durability of different materials

• Provide an estimate of service life and related cost indices



Research Objectives
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• Catalog the relevant culvert exposure conditions and identify the pipe types appropriate 
for a given exposure condition

• Develop a robust and systematic pipe selection guide with a simple and intuitive user 
interface

• Perform quantitative corrosion rate measurements on galvanized and aluminized steel 
pipe materials with different thickness coatings to relate coating thickness to service life 
and to provide a “Discount Rate” – reduce payment for less thickness

• Perform a comparative cost analysis for pipe types subjected to a variety of exposure 
conditions 
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Exposure Conditions and Materials

Soil pH

Soil resistivity

Salt exposure

Soil type

Presence of organic

compounds

Soil saturation

Factors affecting on 
the durability of culverts

5

Culvert materials

RCP (AASHTO M170)

Galvanized CSP (AASHTO M218)

Aluminized CSP (AASHTO M274)

Corrugated Aluminum (AASHTO M196)

Steel, Cast iron

HDPE (AASHTO M294)

PP (AASHTO M330)

PVC (AASHTO M304)

Schematic plan view
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US DOTs with Durability Guidelines



Arc GIS – Exposure Condition (pH)
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Longitude

Latitude
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pH value

Arc GIS – Exposure Condition (pH)



Pipe Selection Guide
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Pipe Selection Guide
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Pipe Selection Guide
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Pipe Selection Guide



14

Pipe Selection Guide
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Pipe Selection Guide

Life-365 (chloride) AISI, FDOT, CALTRANS model (pH, resistivity) Rajani model (2000) Plastic Pipe Institute (PPI)

Gage number



Asheville (Mountain)
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Raleigh (Piedmont)
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Wilmington (Coastal plains)
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Concluding Remarks

19

• The first version of the pipe selection guide was developed; it has been once presented to 
NCDOT engineers

• Since then, the program have been updated and we are planning to have another 
meeting to show the detail of the program and collet their inputs to make sure that the 
program we delivered is useful and suitable for their application

• We are working on developing the program to calculate discount rate for galvanized and 
aluminized steel pipes that do not meet the minimum coating thickness requirements
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Introduction

 Recycled materials are included in the majority of 
asphalt mixtures produced in North Carolina, which 
can include:
• Reclaimed asphalt pavement (RAP); and
• Recycled asphalt shingles (RAS).

 Critical question for reliable mixture design:
• Do recycled binders act as “black rocks” or blend 

with the virgin asphalt?
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Methodology
Use of a Tracer to Track the Virgin Binder
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Submerged Photos Energy Dispersive X-Ray Spectroscopy Scanning Electron 
Microscopy (EDS-SEM)

 Titanium dioxide (0.2 μm) particles added to virgin binder prior to fabricating asphalt 
mixture in the lab. 



Methodology
Quantitative Inferences of Recycled Binder Contribution
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where RBC = percentage of the total recycled
binder within the virgin binder matrix;
VirginTi:S = Ti:S ratio in the virgin binder;
BlendTi:S = Ti:S ratio in the location of interest;
AC = total asphalt content;
RC = recycled binder content;
SV = sulfur content of the virgin binder; and
SR = sulfur content of the recycled binder.

Jiang et al. (2018) 

Sulfur Titanium



Materials

 9.5-mm Nominal Maximum Aggregate Size (NMAS) mixture
• 25 percent RAP
• 4 percent post-consumer RAS
• 6.3 percent total asphalt binder
• 29 percent Recycled Binder Ratio (RBR%)

• 15 percent from RAP
• 14 percent from PRAS

• PG 58-28 virgin binder
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Sample Fabrication

 Lab-mixed, lab-compacted gyratory sample prepared.
• 38-mm diameter by 110-mm tall specimens extracted from the gyratory and 

subjected to cyclic fatigue loading.
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Sawn surface



Observations
Visual
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Observations
Elemental Composition of Fracture Surface
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Summary

 Clusters of recycled materials prohibited complete blending of virgin and 
recycled binders in the asphalt mixture investigated.

 The fracture surface of the asphalt mixture contained no clusters, indicated 
the fracture propagated through the surrounding binder matrix.

 The binder matrix along the fracture surface of the mixture indicated an 
average recycled binder contribution of 40 percent, indicating that 
approximately 60 percent of the total recycled binder did not blend with the 
virgin asphalt. 
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Implications to Volumetric Asphalt Mixture Design

 Credited recycled binder
• Results suggest that giving credit to all of the recycled binder can be erroneous 

and may result in insufficient virgin asphalt contents. 

 Virgin binder grade selection
• Results suggest that using a softer virgin binder grade in all high recycled 

material content mixtures may lead to a softer binder film than intended. 

 Gradation
• Clustering of the recycled material alters the effective gradation of the recycled 

aggregate. 
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Thank you!

Cassie Castorena
cahintz@ncsu.edu
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Presentation Outline
 Research Background and Objective
 Research Approach
 Materials and Test Method
 Pavement Response Analysis Using FlexPAVETM

 Proposed Interface Shear Strength Test and Acceptance Criterion
 Conclusions



Reflective cracking – Major distress in 
asphalt overlay 
• Due to temperature change and repeated 

traffic load
Geosynthetic interlayer acts as the 

reinforcing, stress absorbing system and 
prevents water infiltration into the old 
pavements, thereby, reduces reflective 
cracking.

No standard performance tests 
available for geosynthetic interlayer 
products

Research Background



 Title: Development of Geosynthetic Pavement Interlayer Improvements
 Objective: Develop performance testing methodologies and performance 

criteria for geosynthetics used in pavement interlayer applications that can 
be used in performance specifications and product selection guidelines by 
the NCDOT

 Scope: Geosynthetic interlayer products that are placed between asphalt 
layers 

NCDOT RP-2019-19 Project



Distresses in Asphalt Overlays

No interlayer
with good 
bonding

Interlayer
with poor 
bonding



Research Approach to Debonding Evaluation

Shear Stress

FlexPAVE™

Pavement Response Analysis 

Shear Strength

Laboratory Performance Test

Critical Condition

Shear Rati

.  

o
f

Max Shear Ratio
τ
τ=

MAST Test

MSR < 1 (≥1)
Pass (Fail)

Acceptance Criteria
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50.8 m
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Geosynthetic-Reinforced Specimen

Tack 
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Geosynthetic
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Study Geosynthetic Interlayers

PC#1 PMPaGPC#2 PF

 PG 64-22 binder as a tack coat
Manufacturer recommended tack coat application rates were used. 



Modified Asphalt Shear Tester (MAST)

1 4 5

DIC View
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Factors Conditions

Geosynthetic Types PC#1 PC#2 PM PF PaG

Test Temperature 23°C, 35°C, 54°C

Application Rate Dry, Optimal, Wet

Loading Rate 5.08 mm/min (0.2 in./min)

Confinement
(Normal Stress) 172 kPa (25 psi), 276 kPa (40 psi), 483 kPa (70 psi)

ISS Test Experimental Design



Time-Temperature Superposition of ISS

Low Temperature

High Temperature



Tack Coat Application Rate

ISS Observations

 Presence of any type of geosynthetic 
interlayer at any testing condition reduces 
the ISS.

 ISS decreases with an increase of 
temperature and decrease of loading rate.

 ISS increases with an increase of confining 
pressure.

 Paving composite #1 and paving grid 
display higher ISS than paving composite 
#2, paving mat, and paving fabric.

 Effect of tack coat application rate on the 
ISS is not clear.

25 psi



ISS Prediction Model

Geosynthetic Type a b c d e R2

PC#1 227.80 2.48 893.70 0.13 0.55 0.991

PM 44.92 14.17 1130.00 0.22 0.77 0.821
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Pavement Response Analysis
Thick Pavement, 1 mph, 50°C, 1.5 in. Depth
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MSR of PC#1 and PM
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MSR occurs in front of the tire along the center-line of the tire.
 PM shows a higher MSR than PC#1 reinforced pavements.
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Acceptance Criterion

Confining Pressure 40 psi

Temperature 122°F (50°C)

Actuator Displacement Rate 0.2 in./min

Minimum Required ISS 44 psi (305 kPa)



 The presence of any geosynthetic product at any testing condition reduced the 
ISS in comparison to the control specimen. 

 Paving composite #1 (PC#1) and paving grid (PaG) display the higher shear 
strength among the geosynthetic-reinforced specimens, while paving mat (PM), 
paving fabric (PF), and paving composite #2 (PC#2) show lower shear strength.

 Higher temperature, lower speed, and thinner overlay condition yield higher MSR 
values. This phenomenon indicates that the interlayer shear resistant ability is 
the weakest while the vehicle is about to stop during hot days.

 The MAST test condition for the acceptance of geosynthetic interlayer materials 
includes 50°C (122°F), 5.08 mm/min (0.2 in./min) displacement rate, and 275.8 
kPa (40 psi) confining pressure. The minimum required shear strength for 
geosynthetic-reinforced specimens at this condition is 305 kPa (44 psi). This 
threshold value may need to be adjusted for different machines due to different 
machine compliance.

Conclusions



Thank You!
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